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Under normal circumstances, | would have
given this lecture “in real life”

...but these are not “normal circumstances”

Computer “measurements”
1. What and what not ?

2. How?

Daan Frenkel, U Cambridge




Simulations are used to predict observable
properties, or to test theoretical predictions

To this end, we must measure observables
in simulations.

Measurements in a computer simulation
resemble experimental measurements:

* We have to prepare a sample,

+ We have to decide on the best measuring technique,

+ We have to accumulate enough data,

+ and we should analyse the effect of possible systematic
and statistical errors in our results.

| M

For these reasons, we use the word measurement to
refer to the calculation of an observable, mainly for lack
of a better word
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It is easy to spend an entire course on
simulation measurements.

So this lecture will only present a few
(important) examples.

Even so, | will run out of time, but
please feel free to ask/comment.

First a general comment:

We discuss Classical simulations, based on the
formulation of Statistical Mechanics in 1902, i.e.
before Quantum Mechanics was developed.

Gibbs never used, nor needed Planck’s constant.

Therefore: Planck’s constant can never appear in any
observable that is computed classically.

(Question: so how about the de Broglie thermal wavelength A ?)
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Also: the indistinguishability of identical quantum
particles is irrelevant for an classical calculations...

Not even for the factor 1/N! in the partition function?

No, not even for that.

Where does the factor N! come from?
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The Gibbs Paradox

Thus,'it seems that the 1/N! term is absolutely ncccssary' to resolve the paradox. This means that
only a correct quantum mechanical treatment of the ideal gas gives rise to a consistent entropy.

could only later be identified with Planck’s constant h. The indistinguisha-
bility of particles of the same kind, which had to be introduced in order to
avoid the Gibbs’ paradoz,! got a firm logical basis only after the invention of

quantum theory. The observed distribution of black-body radiation could

least one nucleon mass). Hence the distinction between identical and non-
identical molecules is completely unambiguous in a quantum-mechanieal
description. The Gibbs paradox thus foreshadowed already in the last
century conceptual difficulties that were resolved satisfactorily only by the
advent of quantum mechanics.

It is not possible to understand classically why we must divide }_(E) by N!
to obtain the correct counting of states. The reason is inherently quantum
mechanical. Quantum mechanically,atoms are inherently indistinguishablein the
following sense: A state of the gas is described by an N-particle wave function,
which is either symmetric or antisymmetric with respect to the interchange of any
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t This becomes particularly evident if we consider the classical partition function (integral
over states) as the limit of the quantum partition function. In the latter the summation is
over all the different quantum states, and there is no problem (remembering that, because
of the principle of symmetry of wave functions in quantum mechanics, the quantum state
is unaffected by interchanges of identical particles).

From the purely classical viewpoint the need for this interpretation of the statistical
integration arises because otherwise the statistical weight would no longer be multiplicative,
and so the entropy and the other thermodynamic quantities would no longer be additive.

11

In statistical mechanics this dependence is obtained by inserting a
factor 1/N! in the partition function. Quantum mechanically this factor
enters automatically and in many textbooks that is the way in which
it is justified. My point is that this is irrelevant: even in classical
statistical mechanics it can be derived by logic — rather than by the somewhat
mystical arguments of Gibbs 2 and Planck.’:" Specifically I take exception
to such statements as: "It is not possible to understand classically why we
must divide by N! to obtain the correct counting of states",5 and: "Classical
statistics thus leads to a contradiction with experience even in the range in

which quantum effects in the proper sense can be completely neglected".6

12
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ENTER JAYNES:

“Usually, Gibbs’ prose style conveys his meaning in
a sufficiently clear way...”

“... using no more than twice as many words as
Poincaré or Einstein would have used to say the
same thing”

“But occasionally he delivers a sentence with
a ponderous unintelligibility that seems to
challenge us to make sense out of it...”

13

GIBBS’s SENTENCE:

“Again, when such gases have been mixed,
there is no more impossibility of the
separation of the two kinds of molecules in
virtue of their ordinary motion in the
gaseous mass without any especial external
influence, than there is of the separation of
a homogeneous gas into the same two parts
into which it has once been divided, after
these have these have once been mixed”

14
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Treat as gas of N labeled but otherwise id

Zaist(N) =V

Now: two such systems with Ny and N, particles. In
equilibrium, we can distribute the particles over the two
systems in any way we choose (with fixed Ny and N,).

(N1 + No)!

Zcomine N7V,N,V :VN1VN2X
b d( 1, V1 2 2) 1 2 Nl!Nz!

NOTE:
1. all particles are different (they just have identical properties

— e.g. monodisperse colloidal spheres)
2. Zcombined IS NOt extensive. Not even in quantum mechanics.
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When the two systems are in equilibrium, the partition function
is maximal with respect to variations in N4 (dN4=-dN.).

(:é)lfléZé:> o é)lrlégl/ale! _ é)lIléZj,/fVé!
N

ON; ON, ON, 0

Therefore, as soon as we are computing the chemical
potential, we MUST include the factor N!, also for labeled
particles.

17

Conveniently, the partition function of the
combined system then factorizes

ZC(N17V17N27‘/2) . Zl ZZ

(N1 + No)! Nyl Ny!

and hence the free energy F = -kT In (Z/N!) is extensive.

Z.(N1,V1, Na, Vo) A Zy
1 —In | =— In [ ==
n( (N1 + Na)! ) n( ')+ D(Nzl/

18
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...and, of course, really indistinguishable
particles (e.g “He atoms) can never be
distinguished, not even in principle.

Hence, exchanging them also does not lead
to a different macroscopic state.
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Experimental measurements: we look at the
response of a macroscopic instrument.

Simulation measurements are usually VERY
different:

We relate the observable to the coordinates and
momenta of the particles that we can read out
from our simulation.

HOW ?

That is the subject of this
lecture.

20
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First the easy ones

Density: number of particles per unit volume
p = (NNV)

21

First the easy ones

Temperature (question: how is it defined?): :
Use equipartition

Kinetic energy K of a system with f degrees of
freedom is

K=f (kgT/2)
But whatis f?

In a closed system, f=Nd -1

But in a periodic system, f=(N-1)d -1 (why ?)

22

1/19/22

11



Computing transport coefficients from
an EQUILIBRIUM simulation.

How?

Use linear response theory (i.e. study decay of
fluctuations in an equilibrium system)

Linear response theory in 3 slides:

23

Consider the response of an observable A due to
an external field fg that couples to an observable B:

H = Ho— fpB
For simplicity, assume that (A)g = (B)g =0

_ [exp[-B(Ho — fpB)]A
AN ts = epp(Ho = f5B)]

For small f; we can linearize:
J exp[—BHp]BA
J exp[—BHq]

(AA) = [fB

24
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Hence <AA> ~ IBfB <BA>O

We can measure the “susceptibility” of an observable A,
to an applied field couple to B by measure the static
correlation of A and B.

25
Now consider a weak field that is switched off at t=0.
fg
AA \
' \/
0
t ——
26
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Using exactly the same reasoning as in the static
case, we find:

(AA)(t) = Bfp (BA(1))g

The time-dependent response of A to a field that is
switched off at t=0, is determined by the time-
correlation function of A and B

27

Simple example: computing the mobility of a particle

B(0) = z(0) = [°__ vo(t)dt

<0, (0) >=Bf, [F7dt < v, (0)v,(t) >

28
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Simple example: computing the mobility of a
particle

Experiments measure mobilityn

< v, >=mf,

Hence:

m=D/kgT =0 [, dt <v,(0)vy(t) >

(Einstein relation. [ questions ?])

29
Now the Macroscopic diffusion equations
Fick’s laws:
dc(x,t) n 0 jz(x,t) 5
Ot 0 x
(conservation law)
, 0 c(x,t)
]33(557 t) =-D ’
. 0 x
(constitutive law)
30
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Combine:
0 c(x,t) 02 c(z,t)
_ D —
ot O x2

Initial condition:
c(z,0) = (=)

Solve:

31

Compute mean-squared width:

2(t) /da: c(z,t)x?

32
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2
%/dw 2c(x,t) = D/dac xza C(:E’t).

O x2

|

d <a:2(t)>
dt

Integrating the left-hand side by parts:

33

Or:

2D = |Iim d<w2(t>>
t—o0 dt

This is how Perrin measured the diffusion
coefficient of Brownian particles

34

1/19/22

17



1/19/22

Az(t) = /O "t va (1.

2D = |im a<x2(t)>
t—o00 ot

(a2(t)) = <(/Ot dt’ fux(t/)>2>

35

((forw)’)-
— /o t /o "t dr” (va(t vz ("))

— D /O t /O ‘ dt'dt” <vx(t’)vx(t”)>.

<vx(t’)vx(t”)> = <vx(t’ - t/’)vx(0)> .

36
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t—0o0 0

D = /O dr (v (7)vz(0))

(“Green-Kubo relation”)

But we already derived this, using linear
response theory (with m = D/kgT)

t
2D = lim 2 [ dt" <'U;C(t - t”)fux(O)>

37
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Figure 4.6: (left) Mean-squared displacement Ar(t)? as a function of the
simulation time t. Note that for long times, Ar(t)? varies linearly with t.
The slope is then given by 2dD, where d is the dimensionality of the system
and D the self-diffusion coefficient. (right) Velocity autocorrelation function
(v(0) - v(t)) as a function of the simulation time t.
WARNING: Diffusion coefficients have very large
finite-size effects (that only decay as 1/N'3)
[question 7]
38
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Other examples of Green-Kubo relations:
shear viscosity

n = V%BT JARCRIOLRIO)

N
1
o= (mz‘vf vf +5 2 wify(rij)

i=1 ji

|

39

Other example: thermal conductivity

1 o0 e r AN e
M= [ UEOE®)

=

) d 1
js = o 2 Fig (miv? + > U(?‘ij))

=1 e

40
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Other example: electrical conductivity

_ 1 e el el
0= i | dt (5058 ®)

; N

.e _

Jo = qvi.
=1

41

Sampling observable quantities:

Example 2: the radial distribution function g(r)

g(r) = the average density at distance r from a particle,
divided by the bulk density. In an ideal gas, g(r) = 1
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What could be simpler than computing a
radial distribution function?

Just make a histogram of the densities
as a function of distance

r

The noise is determined by Poisson statistics.

43

Can we do better?

Yes

D. Borgis et al. Mol Phys 111, 3486 (2013)
D. de las Heras & M. Schmidt, Phys Rev
Lett 120, 218001 (2018)

44
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We start from:

g(r) = /dr <ZZ(5

1=1 j#4

Now, note that:

(5(I'—I‘ij):—1A !

4 T‘I’—I‘ij’

45

Integrate by parts, using

vr — _vri — +vrj

and

V, e AUGCY) BFZ.G—BU@N)

46
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We then obtain:

_ _ﬂ ~ Al r; —r 1
g(r)_lzh(r):NMTp a Zz|r¢j—r!3.§(Fi_F]‘)

But / ap T ’
rij — x| '

is like the field at r; due to a unit charge uniformly
distributed over a sphere around the origin, with
radius r.

47

h(r) = N_Zlip <ZZ % (Fi —F;) - %9(%‘ - 7“)>

i=1 j#i ij

NOTE: we do not assume pairwise additivity

48
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Figure 1.

3 Free lunch ?

g(r)

r (o)

Radial distribution function obtained for a single equi-
librated configuration of a Lennard-Jones liquid composed of 864
particles using either the force approach, Equation (6), or the
standard histogram technique, with a grid spacing Ar = 0.005¢0.
The dashed blue line indicates the converged result after 10,000
simulation steps. -

49

More impressive: works for very short ab-initio MD runs

g(r)
T

4
r (A)

Figure 3. Oxygen—oxygen radial distribution function averaged
over 100 configurations extracted from a DFT-MD trajectory with
128 water molecules at ambient liquid conditions. The dashed
blue line indicates the converged result obtained by averaging
over 36,800 configurations.

50
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Scattering experiments and the structure factor:

The intensity of the scattered radiation (X-rays, neutrons,
light ...) with wave-vector q=211/A is proportional to

I(a) = <|A(q)|*> with:

A(q) ~ 305 big)elar

If b(q) is constant, we can factor it our and we get
Alq) ~ 300, @0 = [de Y 6 — xy)elaT
= [drp(r)e’a”

51

I(q) ~ S(a) = « [(p(@)]*) = [{(p(a)) ]

= L [y iy de di’ [(p()p(x"))— < p >2eier =)

In isotropic liquids: <p(r)p(1'/)> = ,029(‘1’ - I'/D

And hence:
S(q) = p [, dr [g(r) — 1]e’a™

That looks great: we can determine the structure
factor S(q) from g(r)

DON'T

52
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Always use:

S(a) = x [{lp(@)*) — [{p(a))?]

Why ?

Because truncating g(r) in the Fourier transform may
lead to spurious oscillations (even negative values) of

S(a)

53

Sampling observable
quantities:

Pressure

54
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1. Thermodynamic relation:

P= - (%)N,T

2. Statistical mechanical relation:
A=—kgTInQ(N,V,T)

With (for atomic systems):

Q(N,V,T) = W [ de®N exp[—BU (r™)]

55

Introduce “scaled” coordinates:
s, =r,/L

VN
N3N N1

Q(N,V,T) = [ as™ expl-pu(s™))

56
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P

P:k’BT

Then:

aIn VN [dsV exp[—BuU(sM)]
oV

NkgT il [ds?N exp[—pU(s™M)]

oV

+ kp

57

P

ausN) & au(N)or; 1 ()
ov or; ov ~ \OV/si,N/T

=1

31‘1' 1 3LSZ' 1
— = S,
oV  3L2 9L 327"

au(shNy g: oU(N) 1y
ov. = or, 3V
_ NkgT n kBTaln [ds™N exp[—pU(sM)]

oV

58
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_ NkgT
%

P

JasN wN D toexpl g™/ ou
- ~((5¥)s.) o

J dsNexp[-pu(s™)]

_ﬁNkBT Al 8UCHV) r; o
= _<Z or; '3V> {

=1

_ NkgT | 1 /& o
P== +3v<§1f" r’> _<(W

g_U)Si>NT

)

e e

59

_ NkpT 1 /< - oU
"= Jr3v<iZ f@'r">_<(8_>Si>N,T

=1

For pairwise additive forces:

J7=i
Then
NkgT 1 N
=y +3v< 2 fiy
i,j=1,i7]

:

60
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NkgT = 1 Al
P=="*3{ 2 fum
i,j=1,i75]
i and j are dummy variable hence:
N N

>, fiymi= > iy

L,j=1,i7] Ja=1,j71

And we can write
N 1 N

> fz'j'l'z'=§ > (fz’j'rz’"'sz

r;)

4,j=1i7] Ja=1,j71
61
But as action equals reaction (Newton’s 3" law):
fij = 4
And hence
N N
> (fij -1+ £ I‘j) = > fi-(ry—ry)
Inserting this in our expression for the pressure,
we get:
NkgT Al
P = + (2 fijorg
Vv OV \, L1
Lj=1i7]
Where I'y; =1 — I';
62
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What to do if you cannot use the virial
expression?

p— A ~ A(V-AV)—A(V)
o 8VAV—>O AV
In[Q(N,V—AV,T)/Q(N,V,T)]
—kBT AV

Use: Q(N,V,T) = /\3NN|/dS exp[—pu(s™)]

V—AV) e—BAU>

p— —kBT1n<( v

AV =0

AV

63

There are two types
of people in this world:

1) Those who can extrapolate
from incomplete data

Thank You !

64
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